

MiniBooNE status snapshot

MiniBooNE has been running for 1 year at Fermilab acquired 15% of goal 10²¹ protons on target At the moment (Sept – mid Nov) accelerator is shutdown important accelerator improvements are underway

Outline

Overview of the experiment (preview of tomorrow's tour) First neutrino events and analysis

Outlook

MiniBooNE's first event:

LSND: Evidence for $\nu_{\mu} \rightarrow \nu_{e}$

87.9±22.4±6.0 events

 $\Delta m^2 \sim 0.2 - 10 \text{ eV}^2$ (Bugey is \overline{v}_e disappearance)

Too many Δm^2 's?

3 light neutrino flavors

Solar neutrinos:

- $\Delta m^2 \approx 7 \times 10^{-5} eV^2$
- mostly $\nu_e \rightarrow \nu_{\mu,\tau}$

Atmospheric neutrinos:

- $\Delta m^2 \approx 2 \times 10^{-3} eV^2$
- mostly $\nu_{\mu} \rightarrow \nu_{\tau}$

$$\Delta m_3^2 = \Delta m_1^2 + \Delta m_2^2$$

Where does LSND's $\Delta m^2 \sim 0.2$ -10 eV² fit in this picture??

v Oscillation Scenarios:

With current results from solar, atmospheric, and LSND v-oscillation searches (3 Δ m²s), we have an interesting situation:

Only 3 active v:

3 active+1 sterile v:

CPT violation:

solar:
$$V_e \rightarrow V_{\mu}$$

atmos: $V_{\mu} \rightarrow V_e, V_{\tau}$
LSND: $\overline{V}_{\mu} \rightarrow \overline{V}_{\tau} \rightarrow \overline{V}_e$

- not a good fit to data

solar: $V_e \rightarrow V_{\mu}, V_{\tau}$

atmos: $\nu_u \rightarrow \nu_\tau$

LSND: $\overline{\nu}_{\mu} \rightarrow \overline{\nu}_{s} \rightarrow \overline{\nu}_{e}$

- possible(?)

solar: $\nu_e \rightarrow \nu_\mu$ atmos: $V_{\mu} \rightarrow V_{\tau}$

LSND: $\overline{\nu}_u \to \overline{\nu}_e$

- possible(?)

Need to definitively check the LSND result.

Goal: test LSND with 5-σ sensitivity over whole allowed range

- higher statistics
- different signature
- different backgrounds
- different systematics

MiniBooNE!

BooNE: Fermilab Booster Neutrino Experiment

First phase: "MiniBooNE"

- Single detector, $v_{\mu} \rightarrow v_{e}$ appearance
- L/E=500 m/500 MeV = 30 m/30 MeV (LSND)

- Y. Liu, I. Stancu Alabama
- S. Koutsoliotas Bucknell
- E. Hawker, R.A. Johnson, J.L. Raaf Cincinnati
- T. Hart, E.D. Zimmerman Colorado
- Aguilar-Arevalo, L.Bugel, J.M. Conrad,
 - J. Formaggio, J. Link, J. Monroe, D. Schmitz, M.H. Shaevitz, M. Sorel, G.P. Zeller *Columbia*
- D. Smith Embry Riddle
- L.Bartoszek, C. Bhat, S J. Brice, B.C. Brown,
 - D.A. Finley, B.T. Fleming, R. Ford, F.G.Garcia,
 - P. Kasper, T. Kobilarcik, I. Kourbanis,
 - A. Malensek, W. Marsh, P. Martin, F. Mills,
 - C. Moore, P. J. Nienaber, E. Prebys,
 - A.D. Russell, P. Spentzouris, R. Stefanski,
 - T. Williams Fermilab
- D. C. Cox, A. Green, H.-O. Meyer, R. Tayloe *Indiana*
- G.T. Garvey, C. Green, W.C. Louis, G.McGregor,
 - S.McKenney, G.B. Mills, V. Sandberg,
 - B. Sapp, R. Schirato, R. Van de Water,
 - D.H. White Los Alamos
- R. Imlay, W. Metcalf, M. Sung, M.O. Wascko Louisiana State
- J. Cao, Y. Liu, B.P. Roe Michigan
- A.O. Bazarko, P.D. Meyers, R.B. Patterson, F.C. Shoemaker, H.A.Tanaka *Princeton*

8-GeV protons on Be target →
π⁺, K⁺,..., focused by horn
decay in 50-m pipe, mostly to ν_μ
all but ν absorbed in steel and dirt
ν's interact in 40-ft tank of mineral oil
charged particles produce light
detected by phototube array

Look for electrons produced by mostly-v_µ beam

The Booster

8 GeV proton accelerator supplies beam to all Fermilab experiments

It must now run at record intensity

MiniBooNE runs simultaneously with the collider program; goals:

Booster performance

We are pushing the Booster hard

Must limit radiation damage and activation of Booster components:

increase protons but decrease beam loss

~steady improvements careful tuning understanding optics

need factor of 2-3 to reach goal 10²¹ p.o.t. by early 2005

further improvements coming collimator project (now) large-aperture RF cavities

energy loss per proton(W-min/proton)

Target and magnetic horn

Increases neutrino intensity by 7x

170 kA in 140 μsec pulses @ 5 Hz

Currently positive particles are being focused, selecting neutrinos $\pi^+ \to \mu^+ \nu_\mu$

the horn current can be reversed to select antineutrinos $\pi^- \times \mu^- \overline{\mu}$

antineutrinos $\pi^- \rightarrow \mu^- \overline{\nu}_{\mu}$

Prior to run, tested to 10M pulses has performed flawlessly: 40M pulses in situ

World's longest-lived horn

Intrinsic v_e in the beam

$$\pi^{+} \rightarrow \mu^{+} \nu_{\mu}$$

$$\downarrow \qquad \qquad e^{+} \nu_{e} \overline{\nu}_{\mu}$$

$$K^+ \rightarrow \pi^0 e^+ v_e$$

$$K_L \rightarrow \pi^- e^+ v_e$$

important bkgd to osc search

Tackle this background with half-million $\nu_{_{\!\mathfrak{U}}}$ interactions in detector HARP experiment (CERN) E910 (Brookhaven)

"Little Muon Counter"

25 m / 50 m decay length option

Little Muon Counter (LMC)

- ▶ off-axis (7°) muon spectrometer
- *K* decays produce higher-energy wide-angle muons than π decays
- ▶ clean separation of muon parentage
- scintillating fiber tracker

Muon Spectrometer

π

Decay Channel

LMC

temporary LMC detector (scintillator paddles) commission data acquisition 53 MHz beam RF structure seen

MiniBooNE detector

pure mineral oil

total volume: 800 tons (6 m radius) fiducial volume: 445 tons (5m radius)

1280 20-cm PMTs in detector at 5.5 m radius

→ 10% photocathode coverage
240 PMTs in veto
(330 new tubes, the rest from LSND)

Phototube support structure provides opaque barrier between veto and main volumes

Pattern of hit tubes (with charge and time information) reconstruction of track location and direction allows separation of different event types. and

e.g. candidate events:

muon from v_{μ} interaction

Michel electron from stopped μ decay after ν_{μ} interaction

 $\pi^0 \rightarrow \text{two photons}$ from v_{μ} interaction

Understanding the detector

Laser flasks

four Ludox-filled flasks fed by optical fiber from laser

Timing Distribution for Laser Events (new tubes)

measure:

PMT charge and time response

and oil attenuation length

397 nm laser (no scintillation!) modeling other sources of "late light"

probability/(0.31 ns)

Stopping muon calibration system

Scintillator tracker above the tank

Optically isolated scintillator cubes in tank:

> six 3-inch (7.6 cm) cubes one 4-inch cube

stopping muons with known path length

Compare
muon energy calculated from range
with
fitted energy (Cherenkov and scint)

from muon range

calibration sample of muons up to 700 MeV

Michel electrons

(electrons from the decay of stopped muons)

plentiful source from cosmics and beam-induced muons

cosmic muon lifetime in oil

measured: $\tau = 2.15 \pm 0.02 \,\mu s$

expected: $\tau = 2.13 \mu s$

(8% μ⁻ capture)

Energy scale and resolution at Michel endpoint (53 MeV)

Michel electrons throughout detector (r<500 cm)

Neutrino events

beam comes in spills @ up to 5 Hz each spill lasts 1.6 μsec

trigger on signal from Booster read out for 19.2 μsec; beam at [4.6, 6.2] μsec

no high level analysis needed to see neutrino events

backgrounds: cosmic muons decay electrons

simple cuts reduce non-beam backgrounds to ~10⁻³

150k neutrino candidates in 1.6 x 10²⁰ protons on target

The road to $v_{\mu} \rightarrow v_{e}$ appearance analysis

```
Blind v_e appearance analysis you can see all of the info on some events or some of the info on all events but you cannot see all of the info on all of the events
```

```
Early physics: other analyses before v_{\mu} \rightarrow v_{e} appearance interesting in their own right relevant to other experiments necessary for v_{\mu} \rightarrow v_{e} search vets data-MC agreement (optical properties, etc.) and reliability of reconstruction algorithms progress in understanding backgrounds
```

CC quasi-elastic

abundance ~40% simple topology one muon-like ring proton rarely above Č

~88% purity ~50% efficiency

kinematics:

 $E_{\mu}, \, \theta_{\mu} \rightarrow E_{\nu}, \, Q^2$ relatively well-known σ : check of flux prediction

NC π^0 production

resonant:

$$\nu + (p/n) \to \nu + \Delta$$

$$\Delta \to (p/n) + \pi$$

coherent:

$$\nu + \mathsf{C} \to \nu + \mathsf{C} + \pi^0$$

abundance ~7% $\pi^0 \rightarrow \gamma \gamma$ two rings E1, E2 from \check{C} intensities

reconstruct invariant mass of two photons

background to v_e appearance and limits on sterile v

NC elastic

abundance ~15% usually sub-C dominated by scintillation

low Ntank (pmt hits) high late light fraction

understanding of scintillation sensitive to nucleon strange spin component

CC v_{μ} quasi-elastic events $\overline{v_{\mu}}$

selection: topology
ring sharpness
on- vs. off-ring hits
timing
single m-like ring
decay electron

variables combined in a Fisher discriminant

yellow band: Monte Carlo with uncertainties from flux prediction

σ_{CCQE} optical properties

Neutrino energy

kinematic reconstruction: assume $v_{\mu} n \rightarrow \mu^{-} p$ use E_{μ} , θ_{μ} to get E_{ν}

NC π^0 production

perform two ring fit on all events require ring energies E_1 , $E_2 > 40 \text{ MeV}$

fit mass peak to extract signal yield including background shape from Monte Carlo

π^0 production angle

sensitive to production mechanism coherent is highly forward peaked

MC and data are relatively normalized

MC shape assumes Rein-Sehgal cross sections

 π^0 decay angle

and

 π^0 momentum

ν_{μ} NC elastics

Consider N_{TANK} spectrum

MC and data shapes agree

for NTANK>50

Unknown component N_{TANK}<30

data and MC relatively normalized for NTANK>50

Late light selection:

fit event vertex for N_{TANK}>50 calculate fraction of late hits select events with significant late light

v_e appearance sensitivity

preliminary estimates, backgrounds and signal

1500 intrinsic v_e

 $500 \mu \text{ mis-ID}$

500 π^0 mis-ID

1000 LSND-based $\nu_{\mu} \rightarrow \nu_{e}$

cover LSND allowed region at 5 σ updated estimates coming currently expect results in 2005

Conclusions
steadily taking data
currently at 15% of 10²¹ p.o.t

beam is working well, but still need higher intensity improvements underway (shutdown) will be key

first sample of neutrino physics detector and reconstruction algorithms are working well

Detection and Reconstruction of Events

Charged particles in the mineral oil emit

Cherenkov radiation

- prompt
- in cone (θ_c =47.4° for β ~1)

Scintillation light

- emission time constant ~ 18 ns
- isotropic
- ∝ kinetic energy

Fuzzy vs. sharp Cherenkov ring

particle ID

Ratio of prompt to late light

In pure mineral oil, Cherenk:scint ~ 3:1

Neutrino-induced muon candidate Labor Day Weekend 2002

Electron from decay of neutrino-induced muon

 π^0 candidate

Time spectrum of light from Michel electrons

muon stops and decays

Measure, e.g., time resolution scintillation time constant

Modeling "late light"

...and scintillation will sit on top of this

Oscillation Evidence

Setup	Е	L	Δ m ² (eV ²)
Solar	3 MeV	1.5x10 ¹¹ m	2x10 ⁻¹¹
(+Reactor) N	.B. matter (MSW) effects		Best: 7x10 ⁻⁵
Atmospheric	500 MeV-	20-12000	
(+Long	1 GeV	km	Best:
Baseline			2.5x10 ⁻³
Accelerator)			
LSND	30 MeV	30 m	1

 γ correlated in position and in time with e no B-field, signature is e and γ sequence

LSND

Signal above background:

 $87.9\pm22.4\pm6.0$ events

Oscillation Probability:

 $(0.264\pm0.067\pm0.045)\%$

KARMEN 2
Excludes part of LSND region

LSND and KARMEN search for $\overline{\nu}_{\mu} \rightarrow \overline{\nu}_{e}$

Source is μ⁺ decay at rest endpoint energy 53 MeV

The LMC collimator

Dimensions: 81 inches long and

16 x 16 inches wide

Composition: Steel with 2 x 2 inch tungsten core

Weight: 3 tons

Aperture diameters: from 0.6 cm upstream 1.0 cm downstream in 27 steps

early LMC data

Booster delivers protons on target

over a 1.6 μs spill

with a microstructure of 80 "buckets" separated by 19 ns

Signal at LMC displays this structure

module 1: most upstream, 0.236 inch (0.6 cm) diameter aperture module 27: most downstream, 0.392 in (1.0 cm) diameter aperture Aperture diameter increases 0.006 inches in successive modules.

LMC fiber tracker under assembly Jan 2003

